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We study spatially localized two-dimensional solutions and their interactions for coupled two-dimensional
(2D) equations applicable near a weakly inverted bifurcation for isotropic systems with broken rotational
symmetry. Even though the linear operator is substantially different from that for the equations for anisotropic
media studied previously, stable localized 2D solutions nevertheless exist. In contrast to the 2D localized
solutions for anisotropic media, these solutions have a more complex shape and their interactions show a

number of interesting features.
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An important discovery within the last several years has
been that of stable localized solutions for the quintic com-
plex Ginzburg-Landau (CGL) equation, an equation with
both dissipation and dispersion which describes systems near
a subcritical bifurcation to traveling waves [1-4]. Localized
solutions of coupled quintic CGL equations have been found
to not only interpenetrate with shape and size unchanged, but
also to undergo mutual annihilation for stabilizing cross cou-
pling or to spread and fill in upon interaction for destabiliz-
ing cross coupling [2,3]. This is in contrast to solitons, which
occur in purely dispersive systems such as the nonlinear
Schrodinger equation and the Korteweg—de Vries equation
(describing shallow water waves), and which only exhibit
interpenetration upon interaction [5,6]. Since, in most physi-
cal systems, dissipation is not some small perturbation which
can be neglected, one would expect the type of solutions
found in the quintic CGL equation to be even more common
in nature than solitons. Experimental systems in which stable
localized solutions have been found are binary fluid convec-
tion, a dissipative system exhibiting a subcritical oscillatory
instability [7,8]; and the catalytic oxidation of carbon mon-
oxide on Pt(110), a dissipative system in which both the
interpenetration and mutual annihilation of counterpropagat-
ing localized solutions were observed [9]. For the latter sys-
tem we have recently pointed out that the behavior of the
pulses observed in this experiment shares many features with
the pulses occurring in the quintic CGL equation [10].

In addition to the one-dimensional (1D) CGL equations,
stable localized solutions have also been found in 2D quintic
CGL equations applicable to anisotropic media (where A ,, in
the 1D equation is replaced by V2A) [1,11]. Interactions of
these 2D solutions are similar to those of the 1D solutions,
except for the introduction of a new parameter, the impact
parameter [11]. The outcome of a collision—interpenetra-
tion, mutual annihilation, or filling-in—depends on the value
of the impact parameter. For large values of the impact pa-
rameter the solutions simply pass by one another.

Recently, a type of localized solution—which has no ana-
log in integrable systems—was discovered for the quintic
CGL equation [12]. For this solution the modulus breathes
periodically, quasiperiodically, or chaotically about some
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fixed shape. These breathing solutions are very different
from the ‘“‘breathers” of the sine-Gordon equation which
simply oscillate periodically about zero for the real field.
Also the chaotic breathing localized solutions are different
from the chaotic localized solutions of the quintic CGL equa-
tion that slowly spread with time [13] and that were studied
to gain insight into the slowly spreading turbulent slugs of
pipe flow [14] and turbulent spots of plane channel flow [15],
both of which are subcritical in nature. For pipe flow, local-
ized solutions which maintain a fixed shape on average also
exist and are referred to as puffs [16].

In addition, we have studied interactions between these
breathing localized solutions of the quintic CGL equation
[17]. We found that the interaction behavior is much richer
than and qualitatively different from that of the fixed-shape
solutions. For a finite range of parameter values, the outcome
of a collision—interpenetration, mutual annihilation, or sur-
vival of only one solution—depends on the initial conditions,
even though there is no change in the parameter values. For
collisions between chaotic localized solutions the outcome
depends sensitively on initial conditions.

Since the primary ingredient for the existence of localized
solutions of the type studied here is a subcritical oscillatory
instability, one would expect that the exact form of the quin-
tic CGL equation is not crucial. Showing this is important,
since equations for physical systems, which have a subcriti-
cal oscillatory bifurcation and for which stable localized so-
lutions exist, may not be of the precise form of the quintic
CGL equation. In fact, we have recently shown that for a
very different type of nonlinearity—a nonlinearity of the
saturation type applicable to a dye laser with saturable ab-
sorber, as opposed to that of the polynomial type occurring in
the quintic CGL equation—stable localized solutions exist in
both one and two dimensions [18]. Also, localized solutions
have been found in the equation for optical bistability which
not only has a nonlinearity of saturation type but also has a
constant term, which is related to an external driving field
and which causes the phase to be pinned [19].

In this paper we study localized solutions in 2D equations
applicable to isotropic systems near a subcritical oscillatory
instability for which the rotational symmetry in the plane is
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broken [20]. These equations, which are a generalization of
the Newell-Whitehead-Segel equation for stationary rolls to
traveling rolls [21], have a very different linear operator from
that of the 2D equations studied in Ref. [11], thus further
demonstrating that the precise form of the equations is not
essential for the existence of stable localized solutions. How-
ever, we do find that the solutions have a more complex
shape than those studied in Ref. [11]. Also, we find the mag-
nitude and direction of the velocity depend on the rotational
orientation of the solutions. Just as in Ref. [11], we find, for
collisions between counterpropagating solutions, interpen-
etration, mutual annihilation, or filling-in, depending on the
cross-coupling and the impact parameter. In addition, we find
the behavior that, for collisions with nonzero impact param-
eter, the interaction can cause the individual states to rotate
from their initial orientation. This subsequently results in the
solutions moving off in directions different from their veloci-
ties prior to the collision.
The equations we study are [20]
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Here A and B are the slowly varying complex amplitudes of
rolls traveling in the +x and —x directions, respectively
(assuming v,>0), and y is in a direction along the rolls. The
parameters 7y, B, 6, and £ are in general complex, i.e., of the
form z=z,+iz;, x is real, € gives the distance above onset
of the instability, v, is the group velocity, and &, is the criti-
cal wave number for the straight rolls. We take €e<<0 and
B,<0 so that the system is subcritical, and take §,>0 to
guarantee saturation. If £,>0 the cross coupling will have a
stabilizing effect during interactions. If £,<O it will have a
destabilizing effect.

Figure 1 shows the formation of a pulse for Eq. (1a) from
an initial Gaussian. The parameter values are given in the
figure captions. Periodic boundary conditions are used. As
can be seen the structure is quite complex during the forma-
tion of the pulse and even the final structure (after all tran-
sients have settled down) is fairly complex as compared to
the 2D solutions of Ref. [11], which are simply axisymmetric
and for which there were no unusual transients.

Figure 2 shows a head-on collision for which interpen-
etration results. The initial states were prepared by initializ-
ing with two Gaussians for A and B, respectively, and allow-
ing the resulting solutions to settle down to their asymptotic
states. During the interaction the amplitudes of the two states
are seen to be reduced as a result of the stabilizing cross
coupling. After the interaction the solutions return to the
shapes they had before the interaction. This solitonlike be-
havior has also been observed in the 1D solutions of Refs.
[2,3] and the 2D solutions of Ref. [11].

Figure 3 shows a head-on collision for which mutual an-
nihilation results. In this case the stabilizing cross coupling is
larger so that the amplitudes are brought to a sufficiently
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small amplitude to cause them to continue to decay after the
interaction (recall that the system is subcritical). Annihila-
tion, which does not occur for solitons, has also been seen in
the 1D solutions of Refs. [2,3] and the 2D solutions of Ref.
[11].

Figure 4 shows a collision for a nonzero value of the
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FIG. 1. 3D plots showing the formation of a stable localized
solution from an initial Gaussian. The parameter values are
€=—0.15, v,=04, y=1+i, x=0, B=—-3—i, §=2.75—i, and
k.= . (a) Initial Gaussian (¢=0). (b) Transient at t=4. (c) Tran-
sient at = 12. (d) Asymptotic state at z=120.
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FIG. 2. Head-on collision between two counterpropagating
pulses showing interpenetration. The parameter values are the same
as in Fig. 1, except for £=1+0i. (a) Contour plot showing initial
state (+=0). (b) 3D plot showing interaction at t=12. (c) Contour
plot showing interaction at #=16. (d) Contour plot showing state
well after collision at =36.

impact parameter b=0.3125. As seen in the figure the indi-
vidual solutions are rotated as a result of the interaction and
are no longer symmetric about any line drawn through the
solution. The solutions are also seen to drift in the y direction
after the interaction. This interaction-induced rotation of the
solutions and the subsequent drift in the y direction is very
different from that of the solutions of Ref. [11] and is a result
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FIG. 3. Head-on collision between two counterpropagating
pulses showing mutual annihilation. The parameter values are the
same as in Fig. 2, except for £,=1.5. The initial state is the same as
in Fig. 2. (a) 3D plot showing interaction at t=16. (b) 3D plot
showing decaying remnants at ¢ =20.

of the more complicated structure of the linear operator. For
larger impact parameters, the degree of rotation, and there-
fore the component of velocity in the y direction, is smaller.

For destabilizing cross coupling we have also observed a
transition from subcritical to absolutely unstable as a result
of the interaction which causes the solutions to spread and
eventually fill in the entire box. This behavior has also been
observed for the 1D solutions of Refs. [2,3] and the 2D so-
lutions of Ref. [11].

In conclusion, we have studied stable localized 2D solu-
tions and their interactions for equations applicable to trav-
eling rolls for isotropic systems near a subcritical oscillatory
bifurcation with broken rotational symmetry. Even though
the linear operator is very different from that for the equa-
tions applicable to anisotropic media studied previously [11],
stable localized solutions nevertheless exist. This demon-
strates that the precise form of the equations is not crucial for
the existence of stable localized solutions. We have found
that the solutions have a more complex shape than those
found in the equations for anisotropic media. Also we have
found a number of interesting features for collisions between
counterpropagating localized solutions. In addition to the
usual behavior of interpenetration, mutual annihilation, and
filling-in, we have found that, for nonzero impact parameter,
the solutions can rotate during the interaction. This causes
them to move off in directions different from their velocities
prior to the collision. A likely experimental system in which
to find localized solutions of the kind studied in this paper is
binary fluid convection, which exhibits a subcritical bifurca-
tion to traveling waves. Although 2D localized solutions
have been found to exist at most as long transients for this
system [22], this may be due to the fact that there are many
defects, with rolls oriented in many directions. It would be
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FIG. 4. Contour plots showing a collision for a nonzero impact parameter of b=0.3125. The parameter values are the same as in Fig. 3.
(a) Approaching solutions at #=8. (b) Interaction at t=16. (c) Shortly after collision at #=24. (d) Well after interaction at #=36.

interesting to see if 2D stable localized pulses could be found
in a binary fluid system in which the cell size is taken with
sufficiently small width so as to stabilize the rolls in one
direction, but not so small as to effectively reduce the pulses
to 1D pulses, which have already been extensively studied
[7.8].
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